skip to main content


Search for: All records

Creators/Authors contains: "K, Gaurav Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the expansion of sensor nodes to newer avenues of technologies, such as the Internet of things (IoT), internet of bodies (IoB), augmented reality (AR), and mixed reality, the demand to support high-speed operations, such as audio and video, with a minimal increase in power consumption is gaining much traction. In this work, we focus on these nodes operating in audio-based AR (AAR) and explore the opportunity of supporting audio at a low power budget. For sensor nodes, communicating one bit of data usually consumes significantly higher power than the power associated with sensing and processing/computing one data bit. Compressing the number of communication bits at the expense of a few computation cycles considerably reduces the overall power consumption of the nodes. Audio codecs such as AAC and LDAC that currently perform compression and decompression of audio streams burn significant power and create a floor to the minimum power possible in these applications. Compressive sensing (CS), a powerful mathematical tool for compression, is often used in physiological signal sensing, such as EEG and ECG, and it can offer a promising low-power alternative to audio codecs. We introduce a new paradigm of using the CS-based approach to realize audio compression that can function as a new independent technique or augment the existing codecs for a higher level of compression. This work, CS-Audio, fabricated in TSMC 65-nm CMOS technology, presents the first CS-based compression, equipped with an ON-chip DWT sparsifier for non-sparse audio signals. The CS design, realized in a pipelined architecture, achieves high data rates and enables a wake-up implementation to bypass computation for insignificant input samples, reducing the power consumption of the hardware. The measurement results demonstrate a 3X-15X reduction in transmitted audio data without a perceivable degradation of audio quality, as indicated by the perceptual evaluation of audio quality mean opinion score (PEAQ MOS) >1.5. The hardware consumes 238 μW power at 0.65 V and 15 Mbps, which is (~20X-40X) lower than audio codecs. 
    more » « less
  2. Recent advances in audio-visual augmented reality (AR) and virtual reality (VR) demands 1) high speed (>10Mbps) data transfer among wearable devices around the human body with 2) low transceiver (TRX) power consumption for longer lifetime, especially as communication energy/b is often orders of magnitude higher than computation energy/switching. While WiFi can transmit compressed video (HD 30fps, compressed @6-12Mbps), it consumes 50-to-400mW power. Bluetooth, on the other hand, is not designed for video transfer. New mm-Wave links can support the required bandwidth but do not support ultra-low-power (<1mW). In recent years, Human-Body Communication (HBC) [1]–[6] has emerged as a promising low-power alternative to traditional wireless communication. However, previous implementations of HBC transmitters (Tx) suffer from a large plate-to-plate capacitance (C p , between signal electrode and local ground of the transmitter) which results in a power consumption of aC p V2f (Fig. 16.6.1) in voltage-mode (VM) HBC. The recently proposed Resonant HBC [6] tries to overcome this problem by resonating C p with a parallel inductor (L). However, the operating frequency is usually < a few 10's of MHz for low-power Electro-Quasistatic (EQS) operation, resulting in a large/bulky inductor. Moreover, the resonant LC p circuit has a large settling time (≈5Q 2 RC P , where R is the effective series resistance of the inductor) for EQS frequencies which will limit the maximum symbol rate to <1MSps for a 21MHz carrier (the IEEE 802.15.6 standard for HBC), making resonant HBC infeasible for> 10Mb/s applications. 
    more » « less
  3. To solve the challenge of powering and communication in a brain implant with low end-end energy loss, we present Bi-Phasic Quasi-static Brain Communication (BP-QBC), achieving < 60dB worst-case channel loss, and ~41X lower power w.r.t. traditional Galvanic body channel communication (G-BCC) at a carrier frequency of 1MHz (~6X lower power than G-BCC at 10MHz) by blocking DC current paths through the brain tissue. An additional 16X improvement in net energy-efficiency (pJ/b) is achieved through compressive sensing (CS), allowing a scalable (6kbps-10Mbps) duty-cycled uplink (UL) from the implant to an external wearable, while reducing the active power consumption to 0.52μW at 10Mbps, i.e. within the range of harvested body-coupled power in the downlink (DL), with externally applied electric currents < 1/5th of ICNIRP safety limits. BP-QBC eliminates the need for sub-cranial interrogators, utilizing quasi-static electrical signals for end-to-end BCC, avoiding transduction losses. 
    more » « less